Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Cell Stem Cell ; 31(2): 260-274.e7, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306994

RESUMO

Probing how human neural networks operate is hindered by the lack of reliable human neural tissues amenable to the dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate into neurons and form functional neural circuits within and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents, and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.


Assuntos
Bioimpressão , Tecido Nervoso , Humanos , Neurônios/metabolismo , Astrócitos/metabolismo , Engenharia Tecidual
2.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328181

RESUMO

Probing how the human neural networks operate is hindered by the lack of reliable human neural tissues amenable for dynamic functional assessment of neural circuits. We developed a 3D bioprinting platform to assemble tissues with defined human neural cell types in a desired dimension using a commercial bioprinter. The printed neuronal progenitors differentiate to neurons and form functional neural circuits in and between tissue layers with specificity within weeks, evidenced by the cortical-to-striatal projection, spontaneous synaptic currents and synaptic response to neuronal excitation. Printed astrocyte progenitors develop into mature astrocytes with elaborated processes and form functional neuron-astrocyte networks, indicated by calcium flux and glutamate uptake in response to neuronal excitation under physiological and pathological conditions. These designed human neural tissues will likely be useful for understanding the wiring of human neural networks, modeling pathological processes, and serving as platforms for drug testing.

3.
Nat Biotechnol ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974010

RESUMO

Central norepinephrine (NE) neurons, located mainly in the locus coeruleus (LC), are implicated in diverse psychiatric and neurodegenerative diseases and are an emerging target for drug discovery. To facilitate their study, we developed a method to generate 40-60% human LC-NE neurons from human pluripotent stem cells. The approach depends on our identification of ACTIVIN A in regulating LC-NE transcription factors in dorsal rhombomere 1 (r1) progenitors. In vitro generated human LC-NE neurons display extensive axonal arborization; release and uptake NE; and exhibit pacemaker activity, calcium oscillation and chemoreceptor activity in response to CO2. Single-nucleus RNA sequencing (snRNA-seq) analysis at multiple timepoints confirmed NE cell identity and revealed the differentiation trajectory from hindbrain progenitors to NE neurons via an ASCL1-expressing precursor stage. LC-NE neurons engineered with an NE sensor reliably reported extracellular levels of NE. The availability of functional human LC-NE neurons enables investigation of their roles in psychiatric and neurodegenerative diseases and provides a tool for therapeutics development.

4.
iScience ; 26(11): 108306, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026209

RESUMO

Human pluripotent stem cell (hPSC)-derived neurons have shown promise in treating spinal cord injury (SCI). We previously showed that hPSC-derived dorsal spinal γ-aminobutyric acid (GABA) neurons can alleviate spasticity and promote locomotion in rats with SCI, but their long-term safety remains elusive. Here, we characterized the long-term fate and safety of human dorsal spinal GABA neural progenitor cells (NPCs) in naive rats over one year. All grafted NPCs had undergone differentiation, yielding mainly neurons and astrocytes. Fully mature human neurons grew many axons and formed numerous synapses with rat neural circuits, together with mature human astrocytes that structurally integrated into the rat spinal cord. The sensorimotor function of rats was not impaired by intraspinal transplantation, even when human neurons were activated or inhibited by designer receptors exclusively activated by designer drugs (DREADDs). These findings represent a significant step toward the clinical translation of human spinal neuron transplantation for treating SCI.

5.
Adv Sci (Weinh) ; 10(33): e2302527, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37867250

RESUMO

There is no effective therapy for ischemic stroke following the acute stage. Neural transplantation offers a potential option for repairing the ischemic lesion. However, this strategy is hindered by the poor survival of the neural precursor cells (NPCs) that are transplanted into the inflammatory ischemic core. Here, a chemical cocktail consisting of fibrinogen and maraviroc is developed to promote the survival of the transplanted NPCs in the ischemic core of the mouse cerebral cortex. The grafted NPCs survive in the presence of the cocktail but not fibrinogen or maraviroc alone at day 7. The surviving NPCs divide and differentiate to mature neurons by day 30, reconstituting the infarct cortex with vascularization. Molecular analysis in vivo and in vitro shows that blocking the activation of CCR5 on the NPCs protects the NPCs from apoptosis induced by pro-inflammatory factors, revealing the underlying protective effect of the cocktail for NPCs. The findings open an avenue to enable survival of the transplanted NPCs under the inflammatory neurological conditions like stroke.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Maraviroc/farmacologia , Diferenciação Celular/fisiologia , Encéfalo , Neurônios
7.
Methods Mol Biol ; 2683: 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300762

RESUMO

Human forebrain cortical neurons are essential for fundamental functions like memory and consciousness. Generation of cortical neurons from human pluripotent stem cells provides a great source for creating models specific to cortical neuron diseases and for developing therapeutics. This chapter describes a detailed and robust method for generating human mature cortical neurons from stem cells in 3D suspension culture.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Neurônios , Prosencéfalo , Córtex Cerebral , Diferenciação Celular
8.
Aging Dis ; 14(5): 1618-1632, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196117

RESUMO

Cellular senescence is a highly complicated cellular state that occurs throughout the lifespan of an organism. It has been well-defined in mitotic cells by various senescent features. Neurons are long-lived post-mitotic cells with special structures and functions. With age, neurons display morphological and functional changes, accompanying alterations in proteostasis, redox balance, and Ca2+ dynamics; however, it is ambiguous whether these neuronal changes belong to the features of neuronal senescence. In this review, we strive to identify and classify changes that are relatively specific to neurons in the aging brain and define them as features of neuronal senescence through comparisons with common senescent features. We also associate them with the functional decline of multiple cellular homeostasis systems, proposing the possibility that these systems are the main drivers of neuronal senescence. We hope this summary will serve as a steppingstone for further inputs on a comprehensive but relatively specific list of phenotypes for neuronal senescence and in particular their underlying molecular events during aging. This will in turn shine light on the association between neuronal senescence and neurodegeneration and lead to the development of strategies to perturb the processes.

9.
Stem Cell Reports ; 18(2): 439-448, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36669493

RESUMO

Spinal cord injury (SCI) leads to permanent neural dysfunction without effective therapies. We previously showed that human pluripotent stem cell (hPSC)-derived spinal GABA neurons can alleviate spasticity and promote locomotion in rats after SCI, but whether this strategy can be translated into the clinic remains elusive. Here, a nonhuman primate (NHP) model of SCI was established in rhesus macaques (Macaca mulatta) in which the T10 spinal cord was hemisected, resulting in neural conduction failure and neural dysfunction, including locomotion deficits, pain, and spasms. Grafted human spinal GABA neurons survived for up to 7.5 months in the injured monkey spinal cord and retained their intrinsic properties, becoming mature and growing axons and forming synapses. Importantly, they are functionally alive, as evidenced by designer receptors exclusively activated by designer drug (DREADD) activation. These findings represent a significant step toward the clinical translation of human spinal neuron transplantation for treating SCI.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Ratos , Animais , Macaca mulatta , Traumatismos da Medula Espinal/terapia , Coluna Vertebral , Neurônios GABAérgicos , Recuperação de Função Fisiológica/fisiologia
10.
Magn Reson Med ; 89(2): 710-720, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36128887

RESUMO

PURPOSE: In current intraoperative MRI (IMRI) methods, an iterative approach is used to aim trajectory guides at intracerebral targets: image MR-visible features, determine current aim by fitting model to image, manipulate device, repeat. Infrequent updates are produced by such methods, compared to rapid optically tracked stereotaxy used in the operating room. Our goal was to develop a real-time interactive IMRI method for aiming. METHODS: The current trajectory was computed from two points along the guide's central axis, rather than by imaging the entire device. These points were determined by correlating one-dimensional spokes from a radial sequence with the known cross-sectional projection of the guide. The real-time platform RTHawk was utilized to control MR sequences and data acquisition. On-screen updates were viewed by the operator while simultaneously manipulating the guide to align it with the planned trajectory. Accuracy was quantitated in a phantom, and in vivo validation was demonstrated in nonhuman primates undergoing preclinical gene ( n = 5 $$ n=5 $$ ) and cell ( n = 4 $$ n=4 $$ ) delivery surgeries. RESULTS: Updates were produced at 5 Hz In 10 phantom experiments at a depth of 48 mm, the cannula tip was placed with radial error of (min, mean, max) = (0.16, 0.29, 0.68) mm. Successful in vivo delivery of payloads to all 14 targets was demonstrated across nine surgeries with depths of (min, mean, max) = (33.3, 37.9, 42.5) mm. CONCLUSION: A real-time interactive update rate was achieved, reducing operator fatigue without compromising accuracy. Qualitative interpretation of images during aiming was rendered unnecessary by objectively computing device alignment.


Assuntos
Neurocirurgia , Animais , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Imageamento Tridimensional
11.
NPJ Regen Med ; 7(1): 38, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915118

RESUMO

Interneuron loss/dysfunction contributes to spontaneous recurrent seizures (SRS) in chronic temporal lobe epilepsy (TLE), and interneuron grafting into the epileptic hippocampus reduces SRS and improves cognitive function. This study investigated whether graft-derived gamma-aminobutyric acid positive (GABA-ergic) interneurons directly regulate SRS and cognitive function in a rat model of chronic TLE. Human pluripotent stem cell-derived medial ganglionic eminence-like GABA-ergic progenitors, engineered to express hM4D(Gi), a designer receptor exclusively activated by designer drugs (DREADDs) through CRISPR/Cas9 technology, were grafted into hippocampi of chronically epileptic rats to facilitate the subsequent silencing of graft-derived interneurons. Such grafting substantially reduced SRS and improved hippocampus-dependent cognitive function. Remarkably, silencing of graft-derived interneurons with a designer drug increased SRS and induced location memory impairment but did not affect pattern separation function. Deactivation of DREADDs restored both SRS control and object location memory function. Thus, transplanted GABA-ergic interneurons could directly regulate SRS and specific cognitive functions in TLE.

13.
Stem Cell Reports ; 17(6): 1366-1379, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35623352

RESUMO

Individuals with Down syndrome (DS; Ts21), the most common genetic cause of intellectual disability, have smaller brains that reflect fewer neurons at pre- and post-natal stages, implicating impaired neurogenesis during development. Our stereological analysis of adult DS cortex indicates a reduction of calretinin-expressing interneurons. Using Ts21 human induced pluripotent stem cells (iPSCs) and isogenic controls, we find that Ts21 progenitors generate fewer COUP-TFII+ progenitors with reduced proliferation. Single-cell RNA sequencing of Ts21 progenitors confirms the altered specification of progenitor subpopulations and identifies reduced WNT signaling. Activation of WNT signaling partially restores the COUP-TFII+ progenitor population in Ts21, suggesting that altered WNT signaling contributes to the defective development of cortical interneurons in DS.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Adulto , Síndrome de Down/genética , Humanos , Interneurônios , Neurogênese/fisiologia , Neurônios , Trissomia
14.
NPJ Parkinsons Dis ; 8(1): 33, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338165

RESUMO

Parkinson's disease (PD) may optimally be treated with a disease-modifying therapy to slow progression. We compare data underlying surgical approaches proposed to impart disease modification in PD: (1) cell transplantation therapy with stem cell-derived dopaminergic neurons to replace damaged cells; (2) clinical trials of growth factors to promote survival of existing dopaminergic neurons; (3) subthalamic nucleus deep brain stimulation early in the course of PD; and (4) abdominal vagotomy to lower risk of potential disease spread from gut to brain. Though targeted to engage potential mechanisms of PD these surgical approaches remain experimental, indicating the difficulty in translating therapeutic concepts into clinical practice. The choice of outcome measures to assess disease modification separate from the symptomatic benefit will be critical to evaluate the effect of the disease-modifying intervention on long-term disease burden, including imaging studies and clinical rating scales, i.e., Unified Parkinson Disease Rating Scale. Therapeutic interventions will require long follow-up times (i.e., 5-10 years) to analyze disease modification compared to symptomatic treatments. The promise of invasive, surgical treatments to achieve disease modification through mechanistic approaches has been constrained by the reality of translating these concepts into effective clinical trials.

15.
J Neurosci ; 42(12): 2584-2597, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35105675

RESUMO

Anastasis is a recently described process in which cells recover after late-stage apoptosis activation. The functional consequences of anastasis for cells and tissues are not clearly understood. Using Drosophila, rat and human cells and tissues, including analyses of both males and females, we present evidence that glia undergoing anastasis in the primary astrogliopathy Alexander disease subsequently express hallmarks of senescence. These senescent glia promote non-cell autonomous death of neurons by secreting interleukin family cytokines. Our findings demonstrate that anastasis can be dysfunctional in neurologic disease by inducing a toxic senescent population of astroglia.SIGNIFICANCE STATEMENT Under some conditions cells otherwise destined to die can be rescued just before death in a process called anastasis, or "rising from the dead." The fate and function of cells undergoing a near death experience is not well understood. Here, we find that in models and patient cells from Alexander disease, an important brain disorder in which glial cells promote neuronal dysfunction and death, anastasis of astrocytic glia leads to secretion of toxic signaling molecules and neurodegeneration. These studies demonstrate a previously unexpected deleterious consequence of rescuing cells on the brink of death and suggest therapeutic strategies for Alexander disease and related disorders of glia.


Assuntos
Doença de Alexander , Animais , Apoptose/fisiologia , Reversão da Morte Celular , Drosophila , Feminino , Humanos , Masculino , Neuroglia , Neurônios , Ratos
16.
Aging Cell ; 21(1): e13541, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953016

RESUMO

Modeling age-related neurodegenerative disorders with human stem cells are difficult due to the embryonic nature of stem cell-derived neurons. We developed a chemical cocktail to induce senescence of iPSC-derived neurons to address this challenge. We first screened small molecules that induce embryonic fibroblasts to exhibit features characteristic of aged fibroblasts. We then optimized a cocktail of small molecules that induced senescence in fibroblasts and cortical neurons without causing DNA damage. The utility of the "senescence cocktail" was validated in motor neurons derived from ALS patient iPSCs which exhibited protein aggregation and axonal degeneration substantially earlier than those without cocktail treatment. Our "senescence cocktail" will likely enhance the manifestation of disease-related phenotypes in neurons derived from iPSCs, enabling the generation of reliable drug discovery platforms.


Assuntos
Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética , Diferenciação Celular , Humanos , Fenótipo
17.
Cell Rep ; 34(12): 108889, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761348

RESUMO

Spinal cord injury (SCI) often results in spasticity. There is currently no effective therapy for spasticity. Here, we describe a method to efficiently differentiate human pluripotent stem cells from spinal GABA neurons. After transplantation into the injured rat spinal cord, the DREADD (designer receptors exclusively activated by designer drug)-expressing spinal progenitors differentiate into GABA neurons, mitigating spasticity-like response of the rat hindlimbs and locomotion deficits in 3 months. Administering clozapine-N-oxide, which activates the grafted GABA neurons, further alleviates spasticity-like response, suggesting an integration of grafted GABA neurons into the local neural circuit. These results highlight the therapeutic potential of the spinal GABA neurons for SCI.


Assuntos
Neurônios GABAérgicos/patologia , Espasticidade Muscular/patologia , Espasticidade Muscular/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/patologia , Potenciais de Ação/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Humanos , Locomoção , Vértebras Lombares/patologia , Vértebras Lombares/fisiopatologia , Masculino , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Espasticidade Muscular/complicações , Inibição Neural , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Ratos Sprague-Dawley , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Sinapses/metabolismo , Sinapses/ultraestrutura
18.
Nat Med ; 27(4): 632-639, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649496

RESUMO

Degeneration of dopamine (DA) neurons in the midbrain underlies the pathogenesis of Parkinson's disease (PD). Supplement of DA via L-DOPA alleviates motor symptoms but does not prevent the progressive loss of DA neurons. A large body of experimental studies, including those in nonhuman primates, demonstrates that transplantation of fetal mesencephalic tissues improves motor symptoms in animals, which culminated in open-label and double-blinded clinical trials of fetal tissue transplantation for PD1. Unfortunately, the outcomes are mixed, primarily due to the undefined and unstandardized donor tissues1,2. Generation of induced pluripotent stem cells enables standardized and autologous transplantation therapy for PD. However, its efficacy, especially in primates, remains unclear. Here we show that over a 2-year period without immunosuppression, PD monkeys receiving autologous, but not allogenic, transplantation exhibited recovery from motor and depressive signs. These behavioral improvements were accompanied by robust grafts with extensive DA neuron axon growth as well as strong DA activity in positron emission tomography (PET). Mathematical modeling reveals correlations between the number of surviving DA neurons with PET signal intensity and behavior recovery regardless autologous or allogeneic transplant, suggesting a predictive power of PET and motor behaviors for surviving DA neuron number.


Assuntos
Comportamento Animal , Depressão/complicações , Transplante de Tecido Fetal , Atividade Motora , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Animais , Dopamina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/patologia , Modelos Lineares , Macaca mulatta , Masculino , Mesencéfalo/transplante , Camundongos , Doença de Parkinson/complicações , Tomografia por Emissão de Pósitrons , Transplante Autólogo , Transplante Homólogo , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Cell Stem Cell ; 28(1): 112-126.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32966778

RESUMO

Although cell transplantation can rescue motor defects in Parkinson's disease (PD) models, whether and how grafts functionally repair damaged neural circuitry in the adult brain is not known. We transplanted hESC-derived midbrain dopamine (mDA) or cortical glutamate neurons into the substantia nigra or striatum of a mouse PD model and found extensive graft integration with host circuitry. Axonal pathfinding toward the dorsal striatum was determined by the identity of the grafted neurons, and anatomical presynaptic inputs were largely dependent on graft location, whereas inhibitory versus excitatory input was dictated by the identity of grafted neurons. hESC-derived mDA neurons display A9 characteristics and restore functionality of the reconstructed nigrostriatal circuit to mediate improvements in motor function. These results indicate similarity in cell-type-specific pre- and post-synaptic integration between transplant-reconstructed circuit and endogenous neural networks, highlighting the capacity of hPSC-derived neuron subtypes for specific circuit repair and functional restoration in the adult brain.


Assuntos
Neurônios , Doença de Parkinson , Adulto , Animais , Dopamina , Neurônios Dopaminérgicos , Humanos , Mesencéfalo , Doença de Parkinson/terapia , Substância Negra
20.
Acta Neuropathol Commun ; 8(1): 214, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287888

RESUMO

Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Colesterol/metabolismo , Metabolismo dos Lipídeos/fisiologia , Neurônios/metabolismo , Tratos Piramidais/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Benzoatos/farmacologia , Benzilaminas/farmacologia , Córtex Cerebral/citologia , Proteínas de Ligação ao GTP/genética , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores X do Fígado/agonistas , Proteínas de Membrana/genética , Neurônios/efeitos dos fármacos , Neurônios/patologia , Células-Tronco Pluripotentes , Tratos Piramidais/citologia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...